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Abstract. This article studies the approximate controllability for a class of
fractional control system with analytic semigroup governed by differential
equations with Hilfer fractional derivatives of order δ ∈ (0, 1) and type
ζ ∈ [0, 1] in a Banach space. The existence and uniqueness of the mild
solution is established with the help of semigroup theory, fractional pow-
er of operators and a generalized contraction type fixed point theorem.
Further, a set of sufficient conditions is formulated for the approximate
controllability of the system under consideration. The result obtained
holds irrespective of whether the generated semigroup is compact or non-
compact.
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1. Introduction

Differential equation involving fractional derivative has emerged as an impor-
tant area of investigation and is considered to be of immense significance in
many branches of science and engineering where the nonlocal condition plays
a vital role. The terms local and nonlocal are distinguished as follows: in order
to calculate integer order derivatives of a function, it is required to know its
properties in an infinitesimal neighborhood of the considered point whereas
the fractional derivative relies not only on the present state but also upon all
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of its past states. As a result, integer order derivatives cannot describe pro-
cesses with memory and this fact acts as the primary advantage of fractional
derivatives over classical derivatives. Fractional differential equation provides
a powerful tool for modeling numerous real life dynamic processes as it can
describe their behavior more accurately. One can find its applications in sig-
nal and image processing, atmospheric diffusion of pollution, transmission of
ultrasound waves, cellular diffusion processes, feedback amplifiers, the effect
of speculation on the profitability of stocks in financial markets, and many
more. For more details on this topic, we refer the reader to [3,14,21] and the
references therein.

There are many possible generalizations of the n-th order differential op-

erator
dn

dτn to the case when n is not an integer, named as Riemann-Liouville,
Caputo, Grünwald-Letnikov, Hadamard’s etc. These operators interpolate be-
tween integer order differential operators. The most popular ones among them
are the derivatives expressed in the Riemann-Liouville and Caputo sense. In [8],
Hilfer proposed a new definition of fractional derivative, called Hilfer fraction-
al derivative (also known as generalized Riemann-Liouville derivative), which
includes both Riemann’s and Caputo’s definitions as particular cases. Subse-
quently, many researchers have studied the existence and uniqueness of non-
linear evolution equations involving Hilfer fractional derivatives [5,6,26].

For finite dimensional system, the concept of controllability for linear
systems was introduced by Kalman [11,12]. In 1975, Triggiani [22] extended
the theory of controllability from finite dimension to linear systems in infi-
nite dimensions under the assumption that the operator acting on the state
is bounded. Controllability of a system means the property of being able to
steer between two arbitrary points in the state space. There are mainly two
basic concepts of controllability : exact controllability and approximate con-
trollability. Exact controllability means that the system can be steered from an
arbitrary initial state to a desired final state whereas approximate controlla-
bility steers the system to an arbitrarily small neighborhood of the final state.
Therefore, approximate controllability is basically a weaker concept than ex-
act controllability. For information on other types of controllability that are
present in literature, we refer the reader to Chalishajar et al. [1] and the ref-
erences therein.

There are various means to establish that a system is approximately con-
trollable. In [17,19,25], the controllability Grammian and fixed point theorems
were used. For the approximate controllability of the considered evolution sys-
tems, it is assumed that the corresponding linear system is approximately
controllable and the nonlinear function is uniformly bounded. Zhou [28] used
the sequential approach and obtained some sufficient conditions for the ap-
proximate controllability of an integer order semi-linear equation. Thereafter,
several researchers, e.g., [15,16] etc., have used this approach to study the
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approximate controllability of nonlinear evolution equations using different
fractional order derivatives.

Dauer and Mahmudov [2] considered the following semi-linear evolution
equation with finite delay:

y(τ) =Q(τ)φ(0) +
∫ τ

0

Q(τ − s)
[
Bu(s) + f(s, ys, u(s))

]
ds, τ ∈ (0, b],

y0(θ) =Θ(θ), θ ∈ [−h, 0],

where y(.) ∈ Y , which is a Hilbert space, u(.) ∈ L2([0, b], U), U a Hilbert space.
{Q(τ)}τ>0 is a compact linear semigroup on Y , B : U → Y is a bounded linear
operator and Θ ∈ C([−h, 0], Y ). For y ∈ C([−h, b], Y ) and each τ ∈ [0, b], yτ is
defined by yτ (θ) = y(τ +θ), for θ ∈ [−h, 0]. Here the controllability Grammian
and Schauder’s fixed point theorem were used to obtain sufficient conditions
for approximate controllability of the system.

Another method for showing the approximate controllability is the one
which establishes to show an inclusion relation between the reachable sets of
the considered system and a linear system, which is assumed to be approx-
imately controllable. In [9,10], Jeong and others considered the approximate
controllability of ordinary semi-linear differential systems and used the concept
of Lebesgue point to show the existence of a control function which steered the
solution of the system to an arbitrary ε neighborhood (ε > 0) of the desired
final state.

Sukavanam and Kumar [20] discussed the approximate controllability of
the following semi-linear delay equation with Caputo fractional derivative :

CDδy(τ) = Ay(τ) + Bu(τ) + f(τ, yτ , u(τ)), τ ∈ (0, b], δ ∈
(

1
2
, 1

)
,

y0(θ) = Θ(θ), θ ∈ [−h, 0],

where A is the generator of a C0-semigroup, Y and U are Banach spaces,
the state y(.) ∈ Y and the control function u(.) ∈ U , B : L2([0, b], U) →
L2([0, b], Yη) is a bounded linear operator and f is a given nonlinear function.

For some recent works on different types of controllability with Hilfer
fractional differential equations, the readers are referred to the works in [4,7,
13,23].

Motivated by the above mentioned works, here we consider the following
Hilfer fractional differential equation:

Dδ,ζ
0+ y(τ) = −Ay(τ) + f(τ, y(τ), u(τ)) + Bu(τ), τ ∈ (0, b], b > 0,

I
(1−δ)(1−ζ)
0+ y(0) = y0,

}
(1.1)

where δ ∈ (0, 1), ζ ∈ [0, 1], −A is the infinitesimal generator of an analytic
semigroup {Q(τ)}τ≥0 on a Banach space Y . The state y(.) takes values in the
Banach space Yη and the control function u ∈ Lp([0, b], U), where pδ > 1, with
U as a Banach space, B : U → Yη, η ∈ (0, 1] is a bounded linear operator and
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y0 ∈ Yη. The nonlinear function f satisfies some assumptions which will be
specified later.

The approximate controllability of problem (1.1) is established by as-
suming that a linear system is approximately controllable and the range of
the nonlinear function f is contained in the range set of the bounded linear
operator B. Here we neither assume any uniform boundedness of the non-
linear function nor any compactness condition on the generated semigroup.
Further, the assumptions considered are more general than the assumptions in
[9,10,20]. To the best of our knowledge, this type of conditions has not been
applied so far for studying the approximate controllability of Hilfer fractional
differential systems.

This paper is arranged as follows: in Sect. 2, we recall some definitions
and lemmas that are used throughout our work, and also present the definition
of mild solution of our considered problem. Section 3 consists of an existence
and uniqueness result for the mild solution of (1.1), obtained by using a fixed
point theorem. In Sect. 4, we present some sufficient conditions for the approx-
imate controllability of our problem. Section 5 summarizes the findings of this
work.

2. Preliminaries

Assume that (U, ‖.‖
U
) and (Y, ‖.‖

Y
) are Banach spaces. Without loss of gen-

erality, assume that 0 ∈ ρ(A). Then, for any η > 0, A−η is a bounded linear
operator defined as

A−η =
1
η

∫ ∞

0

τη−1Q(τ)dτ.

Since A−η is one-to-one, therefore Aη, for η ≥ 0, is defined as

Aη =
{

(A−η)−1, η > 0,
I, η = 0.

Furthermore, Aη is a closed linear operator with domain D(Aη) = R(A−η),
which is dense in Y . Also, D(Aη) is a Banach space with respect to the norm
‖.‖η defined by

‖y‖η = ‖Aηy‖
Y

∀ y ∈ D(Aη).

Denote Yη = (D(Aη), ‖.‖η). Throughout this work, it is assumed that there
exists a constant M

Q
≥ 1 such that ‖Q(τ)‖

B(Y ) ≤ M
Q

for all τ ≥ 0, that is,
{Q(τ)}τ≥0 is uniformly bounded by M

Q
, and {Q(τ)}τ>0 is continuous in the

uniform operator topology.
Let J = [0, b] and C(J, Yη) denote the Banach space of all continuous

functions from J to Yη. Take γ = δ+ζ−δζ so that 1−γ = (1−δ)(1−ζ) ∈ [0, 1).
Define C1−γ(J, Yη) = {y : (0, b] → Yη|τ1−γy(τ) ∈ C(J, Yη)} which is a Banach
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space with respect to the norm ‖.‖1−γ defined by

‖y‖1−γ = sup
τ∈(0,b]

τ1−γ‖y(τ)‖η ∀ y ∈ C1−γ(J, Yη).

Remark : Let y1(τ) = τγ−1y2(τ), τ ∈ (0, b]. Then

y1 ∈ C1−γ(J, Yη) ⇐⇒ y2 ∈ C(J, Yη) and ‖y1‖1−γ = ‖y2‖C
.

Theorem 1. [18]

(i) η1 ≥ η2 > 0 implies D(Aη1) ⊂ D(Aη2),
(ii) if η1, η2 ∈ R, then Aη1+η2y = Aη1Aη2y, for every y ∈ D(Aη) where

η = max{η1, η2, η1 + η2}.
Lemma 1. [18] There exists a constant Mη > 0 such that ‖A−η‖ ≤ Mη, for
η ∈ [0, 1].

Theorem 2. [18]

(i) Q(τ) : Y → D(Aη) for every τ > 0 and η ≥ 0,
(ii) for every y ∈ D(Aη), Q(τ)Aηy = AηQ(τ)y,
(ii) for every τ > 0, AηQ(τ) is bounded and there exists a constant Cη > 0

such that ‖AηQ(τ)‖ ≤ Cη

τη .

Remark. [24] Let Qη(τ) be the restriction of Q(τ) to Yη. Then, {Qη(τ)}τ≥0

is a family of bounded linear operators on Yη and satisfies ‖Qη(τ)‖ ≤ ‖Q(τ)‖
for all τ ≥ 0. Moreover, {Qη(τ)}τ≥0 forms a C0-semigroup on Yη.

Definition 1. [3] The left-sided Riemann-Liouville fractional integral of order
δ > 0 of a function f with lower limit 0 is defined as

Iδ
0+f(τ) :=

1
Γ(δ)

∫ τ

0

(τ − φ)δ−1f(φ)dφ, τ > 0.

Definition 2. [3] The left-sided Riemann-Liouville derivative of order δ > 0 of
a function f with lower limit 0 is defined as

RLDδ
0+f = DnIn−δ

0+ f,

with n denoting the greatest integer less than or equal to δ and Dn denoting the
n-th order differential operator. For δ = 0, RLDδ

0+ = I, the identity operator.

Definition 3. [26] The left-sided Caputo derivative of order δ > 0 of a function
f with lower limit 0 is defined as

CDδ
0+f(τ) =

1
Γ(n − δ)

∫ τ

0

(τ − φ)n−δ−1f (n)(φ)dφ, τ > 0

=In−δ
0+ fn(τ).

For δ = 0, CDδ
0+ = I.
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Definition 4. [26] The left-sided Hilfer derivative of order δ ∈ (0, 1) and type
ζ ∈ [0, 1] is defined as

Dδ,ζ
0+ = I

ζ(1−δ)
0+ DI

(1−ζ)(1−δ)
0+ ,

where D denotes the differential operator.
Also, we have Dδ,0

0+ = DI1−δ
0+ = RLDδ

0+ , and Dδ,1
0+ = I1−δ

0+ D = CDδ
0+ .

Let y(t; y0, u) denote the state value of (1.1) at time t corresponding to
the initial value y0 and control u(.). Then, we have the following definition of
mild solution:

Definition 5. [6,26] A function y(.; y0, u) ∈ C1−γ(J, Yη) is said to be a mild
solution of (1.1), if for any u in Lp([0, b], U), the following integral equation is
satisfied:

y(τ ; y0, u) = Tζ,δ(τ)y0 +
∫ τ

0

Sδ(τ − φ)
[
f(φ, y(φ), u(φ)) + Bu(φ)

]
dφ

= Tζ,δ(τ)y0 +
∫ τ

0

(τ − φ)δ−1Rδ(τ − φ)f(φ, y(φ), u(φ))dφ

+
∫ τ

0

(τ − φ)δ−1Rδ(τ − φ)Bu(φ)dφ

for τ ∈ (0, b], where

Tζ,δ(τ) = I
ζ(1−δ)
0+ Sδ(τ), Sδ(τ) = τ δ−1Rδ(τ), Rδ(τ) =

∫ ∞

0

δθMδ(θ)Q(τ δθ)dθ,

Mδ(θ) =
1
δ
θ−1− 1

δ ψδ(θ− 1
δ ), ψδ(θ) =

1
π

∞∑
n=0

(−1)n−1θ(−δn−1) Γ(δn + 1)
n!

sin(nπδ),

for θ ∈ (0,∞). Here, Mδ(θ) is a probability density function on (0,∞) satisfy-
ing

Mδ(θ) ≥ 0,

∫ ∞

0

Mδ(θ)dθ = 1,

∫ ∞

0

θMδ(θ)dθ =
1

Γ(1 + δ)
.

Next we have the following properties of the solution operators Rδ(τ),
Sδ(τ) and Tζ,δ(τ) [6]:
(P1) Rδ(τ) is continuous in the uniform operator topology for τ > 0.
(P2) for any fixed τ > 0, Rδ(τ), Sδ(τ) and Tζ,δ(τ) are linear operators on Y ,

and

‖Rδ(τ)y‖
Y

≤ M
Q

Γ(δ)
‖y‖

Y
,

‖Sδ(τ)y‖
Y

≤ M
Q
τ δ−1

Γ(δ)
‖y‖

Y
,

‖Tζ,δ(τ)y‖
Y

≤ M
Q
τγ−1

Γ(γ)
‖y‖

Y

hold for any y ∈ Y .
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(P3) {Sδ(τ)}τ>0 and {Tζ,δ(τ)}τ>0 are strongly continuous.
Before going to the next step, let us first recall some of the remaining

properties :
(P4) for any fixed τ > 0, and any y ∈ Yη,

‖Rδ(τ)y‖η ≤ M
Q

Γ(δ)
‖y‖η,

‖Sδ(τ)y‖η ≤ M
Q
τ δ−1

Γ(δ)
‖y‖η,

‖Tζ,δ(τ)y‖η ≤ M
Q
τγ−1

Γ(γ)
‖y‖η.

(P5) For each y ∈ Yη and τ > 0,

AηRδ(τ)y = Rδ(τ)Aηy, AηSδ(τ)y = Sδ(τ)Aηy, AηTζ,δ(τ)y = Tζ,δ(τ)Aηy.

Theorem 3. [15] Let Y be a Banach space and F : Y → Y be a map such that
F (i) (= F ◦ F ◦ . . . ◦ F︸ ︷︷ ︸

i times

) is a contraction map for some i ∈ N. Then, F has a

unique fixed point on Y .

Definition 6. [14] The one-parameter Mittag-Leffler function is defined by

Ec(z) =
∞∑

n=0

zn

Γ(cn + 1)
, z ∈ C, Re(c) > 0,

where Re denotes the real part.
This function is a generalization of the exponential function. An extension

of the above function is the following two-parameter Mittag-Leffler function:

Ec,d(z) =
∞∑

n=0

zn

Γ(cn + d)
, z, d ∈ C, Re(c) > 0.

Lemma 2. [16,27] Assume that α1 : [0, b] → [0,∞) is locally integrable and
α2 : [0, b] → [0,∞) is a nondecreasing continuous function such that α2(τ) ≤ C
(a constant). Suppose α3 : [0, b] → [0,∞) is locally integrable and satisfies the
inequality

α3(τ) ≤ α1(τ) + α2(τ)
∫ τ

0

(τ − φ)r−1α3(φ)dφ, τ ∈ [0, b], r > 0.

Then

α3(τ) ≤ α1(τ) +
∫ τ

0

[ ∞∑
i=1

(α2(τ)Γ(r))i

Γ(ir)
(τ − φ)ir−1α1(φ)

]
dφ, τ ∈ [0, b].

In addition, if α1 is nondecreasing, then α3(τ) ≤ α1(τ)Er(α2(τ)Γ(r)τ r) for
τ ∈ [0, b].
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3. Existence and Uniqueness of Mild Solution

Take ζ 
= 0, that is, ζ ∈ (0, 1], then we have the following limits [6] :

lim
τ→0+

τ1−γTζ,δ(τ)y0 =
y0

Γ(γ)
,

lim
τ→0+

τ1−γ

∫ τ

0

(τ − φ)δ−1Rδ(τ − φ)f(φ, y(φ), u(φ))dφ = 0,

lim
τ→0+

τ1−γ

∫ τ

0

(τ − φ)δ−1Rδ(τ − φ)Bu(φ)dφ = 0.

Also, let a = (δ−1)p
p−1 .

For the existence and uniqueness result, we use the following assumptions :
(Hf) there exists a constant ξ ∈ [η, 1] such that f : [0, b]×Yη ×U → Yξ satisfies
the following:

(i) there exists a constant L > 0 such that

‖f(τ, y1, u1) − f(τ, y2, u2)‖ξ ≤ L
[‖y1 − y2‖η + ‖u1 − u2‖U

]
for all yi ∈ Yη, ui ∈ U ; i = 1, 2 and τ ∈ [0, b].

(ii) there exist a function g ∈ Lp([0, b], [0,∞)) and a constant c > 0 such that

‖f(τ, y, u)‖ξ ≤ g(τ) + c
(
τ1−γ‖y‖η + ‖u‖

U

)
for all y ∈ Yη, u ∈ U and τ ∈ [0, b].

Theorem 4. If the above assumptions are satisfied, then for each u ∈ Lp([0, b], U),
problem (1.1) has a unique mild solution on C1−γ(J, Yη).

Proof. Define a map Υ on C1−γ(J, Yη) by

(Υy)(τ) = Tζ,δ(τ)y0 +
∫ τ

0

(τ − φ)δ−1Rδ(τ − φ)[f(φ, y(φ), u(φ)) + Bu(φ)]dφ.

�

The proof is split into several parts as follows.
Step 1: To show that Υ is well-defined on C1−γ(J, Yη) :

Using (P4), Theorem 1, Lemma 1, (Hf)(ii) and Hölder’s inequal-
ity, we have∫ τ

0

‖(τ − φ)δ−1Rδ(τ − φ)f(φ, y(φ), u(φ))‖ηdφ

≤ M
Q

Γ(δ)

∫ τ

0

(τ − φ)δ−1‖f(φ, y(φ), u(φ))‖ηdφ

≤ M
Q
Mξ−η

Γ(δ)

∫ τ

0

(τ − φ)δ−1‖f(φ, y(φ), u(φ))‖ξdφ

≤ M
Q
Mξ−η

Γ(δ)

∫ τ

0

(τ − φ)δ−1
[
g(φ) + c

(
φ1−γ‖y(φ)‖η + ‖u(φ)‖

U

)]
dφ
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≤ M
Q
Mξ−η

Γ(δ)

[(‖g‖Lp + c‖u‖Lp

) b
(δp−1)

p

(a + 1)
(p−1)

p

+
cbδ

δ
‖y‖1−γ

]
.

Similarly, using (P4) and Hölder’s inequality,

∫ τ

0

‖(τ − φ)δ−1Rδ(τ − φ)Bu(φ)‖ηdφ ≤ M
Q

Γ(δ)

∫ τ

0

(τ − φ)δ−1‖Bu(φ)‖ηdφ

≤ M
Q

Γ(δ)
‖Bu‖Lp

b
(δp−1)

p

(a + 1)
(p−1)

p

.

Therefore, (τ − φ)δ−1Rδ(τ − φ)f(φ, y(φ), u(φ)) and (τ − φ)δ−1Rδ(τ −
φ)Bu(φ) are Bochner integrable w.r.t. φ ∈ [0, τ ] for all τ ∈ (0, b].
Hence, (Υy)(.) is well-defined on (0, b] for any y ∈ C1−γ(J, Yη).

Step 2: To show that Υy ∈ C1−γ(J, Yη) for any y ∈ C1−γ(J, Yη) :
Let y ∈ C1−γ(J, Yη). Define y : [0, b] → Yη by

y(τ) =
{

limτ→0 τ1−γ(Υy)(τ), τ = 0,
τ1−γ(Υy)(τ), τ ∈ (0, b],

=
{ y0

Γ(γ) , τ = 0,

τ1−γ(Υy)(τ), τ ∈ (0, b].

Then, it can be easily seen that, for 0 = τ1 < τ2 ≤ b,

‖y(τ2) − y(τ1)‖η −→ 0 as τ2 → τ1.

Next, for 0 < τ1 < τ2 ≤ b, we have

‖y(τ2) − y(τ1)‖η

≤ ‖τ1−γ
2 Tζ,δ(τ2)y0 − τ1−γ

1 Tζ,δ(τ1)y0‖η +
∥∥∥∥τ1−γ

2

∫ τ2

0

(τ2 − φ)δ−1Rδ(τ2 − φ)

× f(φ, y(φ), u(φ))dφ − τ1−γ
1

∫ τ1

0

(τ1 − φ)δ−1Rδ(τ1 − φ)f(φ, y(φ), u(φ))dφ

∥∥∥∥
η

+
∥∥∥∥τ1−γ

2

∫ τ2

0

(τ2−φ)δ−1Rδ(τ2−φ)Bu(φ)dφ−τ1−γ
1

∫ τ1

0

(τ1−φ)δ−1Rδ(τ1−φ)

× Bu(φ)dφ

∥∥∥∥
η

.
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First term:

‖τ1−γ
2 Tζ,δ(τ2)y0 − τ1−γ

1 Tζ,δ(τ1)y0‖η

=
∥∥∥∥ 1

Γ(ζ(1 − δ))

[
τ1−γ
2

∫ τ2

0

(τ2 − φ)ζ(1−δ)−1φδ−1Rδ(φ)y0dφ − τ1−γ
1

×
∫ τ1

0

(τ1 − φ)ζ(1−δ)−1φδ−1Rδ(φ)y0dφ

]∥∥∥∥
η

≤
∥∥∥∥ 1

Γ(ζ(1 − δ))

∫ τ2

τ1

τ1−γ
2 (τ2 − φ)ζ(1−δ)−1φδ−1Rδ(φ)y0dφ

∥∥∥∥
η

+
1

Γ(ζ(1 − δ))

×
∥∥∥∥

∫ τ1

0

τ1−γ
2

{
(τ2 − φ)ζ(1−δ)−1 − (τ1 − φ)ζ(1−δ)−1

}
φδ−1Rδ(φ)y0dφ

∥∥∥∥
η

+
∥∥∥∥τ1−γ

2 − τ1−γ
1

Γ(ζ(1 − δ))

[ ∫ τ1

0

(τ1 − φ)ζ(1−δ)−1φδ−1Rδ(φ)y0dφ

]∥∥∥∥
η

≤ I11 + I12 + I13,

where

I11 =
M

Q
‖y0‖ητ1−γ

2

Γ(δ)Γ(ζ(1 − δ))

∫ τ2

τ1

(τ2 − φ)ζ(1−δ)−1φδ−1dφ,

I12 =
M

Q
τ1−γ
2 ‖y0‖η

Γ(ζ(1 − δ))

∫ τ1

0

[(τ1 − φ)ζ(1−δ)−1 − (τ2 − φ)ζ(1−δ)−1]φδ−1dφ,

I13 =
τ1−γ
2 − τ1−γ

1

Γ(ζ(1 − δ))

∫ τ1

0

(τ1 − φ)ζ(1−δ)−1φδ−1‖Rδ(φ)y0‖ηdφ.

By absolute continuity of Lebesgue integral, I11 → 0 as τ2 → τ1. For
I12, we have

[(τ1 − φ)ζ(1−δ)−1 − (τ2 − φ)ζ(1−δ)−1]φδ−1 ≤ (τ1 − φ)ζ(1−δ)−1φδ−1

for a.e. φ ∈ [0, τ1]. Therefore, by vector-valued dominated convergence
theorem, I12 → 0 as τ2 → τ1. Next, for I13, we have

I13 ≤ M
Q
(τ1−γ

2 − τ1−γ
1 )‖y0‖η

Γ(δ)Γ(ζ(1 − δ))

∫ τ1

0

(τ1 − φ)ζ(1−δ)−1φδ−1dφ

=
M

Q
τγ−1
1 (τ1−γ

2 − τ1−γ
1 )‖y0‖η

Γ(δ)Γ(ζ(1 − δ))
−→ 0, as τ2 → τ1.
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Second term:

∥∥∥τ1−γ
2

∫ τ2

0

(τ2 − φ)δ−1Rδ(τ2 − φ)f(φ, y(φ), u(φ))dφ

− τ1−γ
1

∫ τ1

0

(τ1 − φ)δ−1Rδ(τ1 − φ)f(φ, y(φ), u(φ))dφ
∥∥∥

η

≤ τ1−γ
2

∫ τ2

τ1

(τ2−φ)δ−1
∥∥Rδ(τ2−φ)f(φ, y(φ), u(φ))

∥∥
η
dφ+

∫ τ1

0

∣∣τ1−γ
2 (τ2−φ)δ−1

− τ1−γ
1 (τ1−φ)δ−1

∣∣∥∥Rδ(τ2−φ)f(φ, y(φ), u(φ))
∥∥

η
dφ+τ1−γ

1

∫ τ1

0

(τ1−φ)δ−1

× ∥∥[Rδ(τ2 − φ) − Rδ(τ1 − φ)]f(φ, y(φ), u(φ))
∥∥

η
dφ

= I21 + I22 + I23,

where

I21 = τ1−γ
2

∫ τ2

τ1

(τ2 − φ)δ−1
∥∥Rδ(τ2 − φ)f(φ, y(φ), u(φ))

∥∥
η
dφ,

I22 =
∫ τ1

0

∣∣τ1−γ
2 (τ2−φ)δ−1−τ1−γ

1 (τ1−φ)δ−1
∣∣∥∥Rδ(τ2−φ)f(φ, y(φ), u(φ))

∥∥
η
dφ,

I23 = τ1−γ
1

∫ τ1

0

(τ1 − φ)δ−1
∥∥[Rδ(τ2 − φ) − Rδ(τ1 − φ)]f(φ, y(φ), u(φ))

∥∥
η
dφ.

Now,

I21 ≤ M
Q
Mξ−ητ1−γ

2

Γ(δ)

∫ τ2

τ1

(τ2 − φ)δ−1
∥∥f(φ, y(φ), u(φ))

∥∥
ξ
dφ

≤ M
Q
Mξ−ηb1−γ

Γ(δ)

[(‖g‖Lp+c‖u‖Lp

) (τ2 − τ1)
(δp−1)

p

(a + 1)
(p−1)

p

+
c(τ2 − τ1)δ

δ
‖y‖1−γ

]

−→ 0, as τ2 → τ1,

I22 ≤ M
Q
Mξ−η

Γ(δ)

[ ∫ τ1

0

∣∣τ1−γ
2 (τ2 − φ)δ−1 − τ1−γ

1 (τ1 − φ)δ−1
∣∣g(φ)dφ + c‖y‖1−γ

×
∫ τ1

0

∣∣τ1−γ
2 (τ2 − φ)δ−1 − τ1−γ

1 (τ1 − φ)δ−1
∣∣dφ + c

∫ τ1

0

∣∣τ1−γ
2 (τ2 − φ)δ−1

− τ1−γ
1 (τ1 − φ)δ−1

∣∣‖u(φ)‖
U
dφ

]

which converges to 0 as τ2 → τ1 due to Lebesgue’s dominated conver-
gence theorem.
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Next, for ε > 0 small enough, we have

I23 ≤ Mξ−η

[(‖g‖Lp + c‖u‖Lp

) τ
1−γ+ (δp−1)

p

1

(a + 1)
(p−1)

p

+ c‖y‖1−γ
τ1

1−γ+δ

δ

]

× sup
φ∈[0,τ1−ε]

∥∥Rδ(τ2 − φ) − Rδ(τ1 − φ)
∥∥

B(Y )
+

2M
Q
Mξ−ηb1−γ

Γ(δ)

×
[(‖g‖Lp + c‖u‖Lp

) ε
(δp−1)

p

(a + 1)
(p−1)

p

+ c‖y‖1−γ
εδ

δ

]
,

where the RHS converges to zero, by using (P1), as τ2 → τ1 and ε → 0.
Third term:

∥∥∥τ1−γ
2

∫ τ2

0

(τ2 − φ)δ−1Rδ(τ2 − φ)Bu(φ)dφ

− τ1−γ
1

∫ τ1

0

(τ1 − φ)δ−1Rδ(τ1 − φ)Bu(φ)dφ
∥∥∥

η
≤ I31 + I32 + I33,

where

I31 = τ1−γ
2

∫ τ2

τ1

(τ2 − φ)δ−1‖Rδ(τ2 − φ)Bu(φ)‖ηdφ,

I32 =
∫ τ1

0

∣∣τ1−γ
2 (τ2 − φ)δ−1 − τ1−γ

1 (τ1 − φ)δ−1
∣∣‖Rδ(τ2 − φ)Bu(φ)‖ηdφ,

I33 = τ1−γ
1

∫ τ1

0

(τ1 − φ)δ−1
∥∥[Rδ(τ2 − φ) − Rδ(τ1 − φ)]Bu(φ)

∥∥
η
dφ.

Now,

I31 ≤ M
Q
‖Bu‖Lpb1−γ

(a + 1)
(p−1)

p Γ(δ)
(τ2 − τ1)

(δp−1)
p −→ 0, as τ2 → τ1.

By Lebesgue’s dominated convergence theorem, I32 → 0 as τ2 → τ1,
and applying a similar technique as for I23, we get I33 → 0 as τ2 → τ1.

Thus, we have for 0 < τ1 < τ2 ≤ b,

‖y(τ2) − y(τ1)‖η −→ 0, as τ2 → τ1.

Therefore, y ∈ C(J, Yη) and hence Υy ∈ C1−γ(J, Yη).
Step 3: To show that Υ(i) is a contraction for some i ∈ N :

We proceed by induction on i. Let x, y ∈ C1−γ(J, Yη). Then, for
any τ ∈ (0, b], we claim that

τ1−γ‖(Υ(i)x)(τ)−(Υ(i)y)(τ)‖η ≤ Γ(γ)
(LM

Q
Mξ−ητ δ)i

Γ(iδ + γ)
‖x−y‖1−γ for all i ∈ N.

(3.1)
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For i = 1, using (P4), Lemma 1 and (Hf)(i), we have

τ1−γ‖(Υx)(τ) − (Υy)(τ)‖η ≤ M
Q
Mξ−ητ1−γ

Γ(δ)

∫ τ

0

(τ − φ)δ−1‖f(φ, x(φ), u(φ))

− f(φ, y(φ), u(φ))‖ξdφ

≤ LM
Q
Mξ−ητ1−γ

Γ(δ)

∫ τ

0

(τ−φ)δ−1‖x(φ)−y(φ)‖ηdφ

≤ LM
Q
Mξ−ητ1−γ

Γ(δ)
‖x−y‖1−γ

∫ τ

0

(τ−φ)δ−1φγ−1dφ

= Γ(γ)
LM

Q
Mξ−ητ δ

Γ(δ + γ)
‖x − y‖1−γ .

Thus, Eq. (3.1) holds for i = 1.
Induction hypothesis : Assume that (3.1) holds for i = k, i.e.,

τ1−γ‖(Υ(k)x)(τ) − (Υ(k)y)(τ)‖η ≤ Γ(γ)
(LM

Q
Mξ−ητ δ)k

Γ(kδ + γ)
‖x − y‖1−γ .

Then,

τ1−γ‖(Υ(k+1)x)(τ) − (Υ(k+1)y)(τ)‖η

≤ Γ(γ)
(LM

Q
Mξ−η)k+1τ1−γ

Γ(kδ + γ)Γ(δ)
‖x − y‖1−γ

∫ τ

0

(τ − φ)δ−1φγ+kδ−1dφ

≤ Γ(γ)
(LM

Q
Mξ−ητ δ)k+1

Γ((k + 1)δ + γ)
‖x − y‖1−γ .

Thus, by principle of mathematical induction, (3.1) holds for all i ∈ N.
Now, for τ ∈ (0, b], we have

τ1−γ‖(Υ(i)x)(τ) − (Υ(i)y)(τ)‖η ≤ Γ(γ)
(LM

Q
Mξ−ητ δ)i

Γ(iδ + γ)
‖x − y‖1−γ

which gives

‖Υ(i)x − Υ(i)y‖1−γ ≤ Γ(γ)
(LM

Q
Mξ−ηbδ)i

Γ(iδ + γ)
‖x − y‖1−γ .

Since the series Eδ,γ(LM
Q
Mξ−ηbδ) =

∞∑
i=0

(LM
Q
Mξ−ηbδ)i

Γ(iδ + γ)
converges,

therefore we can get

(LM
Q
Mξ−ηbδ)i

Γ(iδ + γ)
<

1
Γ(γ)

for i sufficiently large.

Therefore, Υ(i) is a contraction on C1−γ(J, Yη) and thus Υ has a unique
fixed point on C1−γ(J, Yη).

In other words, problem (1.1) has a unique solution on C1−γ(J, Yη).
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4. Approximate Controllability

In this section, we establish the approximate controllability of Eq. (1.1).
We know that y(b; y0, u) denotes the state value of (1.1) at terminal

time b corresponding to the initial value y0 and control u(.). Let Rb(f) =
{y(b; y0, u)|u ∈ Lp([0, b], U)} denote the reachable set − the set of all points
to which the initial state y0 can be steered in time b under the influence of the
control u.

Definition 7. (1.1) is said to be approximately controllable on [0, b] if given an
arbitrary ε > 0, it is possible to steer from y0 to a point within a distance ε
from all points in the state space Yη at time b.

Thus, in terms of the reachable set, (1.1) is approximately controllable
on [0, b] if and only if Rb(f) = Yη.

Now, consider the following linear system:

Dδ,ζ
0+ y(τ) = −Ay(τ) + Bv(τ), τ ∈ (0, b],

I
(1−δ)(1−ζ)
0+ y(0) = y0.

}
(4.1)

Then in accordance with the above notation, the reachable set of (4.1) is
denoted by Rb(0).

Fix y ∈ C1−γ([0, b], Yη) and h ∈ Lp([0, b], U). Define a map K by

K(τ) = f(τ, y(τ), h(τ)).

Then K belongs to Lp([0, b], Yη).
To prove the approximate controllability of (1.1), we use the generalized

Grönwall inequality (Lemma 2), for which we need to modify our assumption
(i) in (Hf) as
(iii) there exists a constant N > 0 such that

‖f(τ, y1, u1) − f(τ, y2, u2)‖ξ ≤ Nτ1−γ
[‖y1 − y2‖η + ‖u1 − u2‖U

]
,

for all yi ∈ Yη, ui ∈ U ; i = 1, 2 and τ ∈ [0, b].
Also, we consider the following assumptions :

(HfB) range(f) ⊂ range(B).
(HB) there exists a constant e > 0 such that ‖Bu‖η ≥ e‖u‖

U
for all u ∈ U .

Theorem 5. Assume that hypotheses (HfB), (HB) and (Hf) (with (i) replaced
by (iii)) hold. Then, the approximate controllability of linear system (4.1) and
the inequality

max{cMξ−η,Mξ−ηNb1−γ} < e

imply that (1.1) is approximately controllable.

Proof. Let w be the mild solution of the linear system (4.1) corresponding to
a control v. First, we show that for w ∈ C1−γ(J, Yη) and v ∈ Lp([0, b], U),
there exists a control function u ∈ Lp([0, b], U) such that it satisfies Bu(τ) =
Bv(τ) − f(τ, w(τ), u(τ)), τ ∈ (0, b]. �
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Now, define a new function Π: range(B) ⊂ Yη → U by

Πr = u whenever Bu = r.

Then, using (HB), it can be shown that Π is well-defined. The function Π forms
a bounded linear map with ‖Π‖ ≤ 1

e . Also, ΠB = IdU and BΠ = Idrange(B).
Next, we begin by showing that for each τ ∈ (0, b], there exists u(t) ∈ U

such that u(τ) = v(τ) − Πf(τ, w(τ), u(τ)), for all τ ∈ (0, b].
Let h0(τ) = v(τ), τ ∈ [0, b] and for each n ∈ N, define

hn(τ) =
{

v(τ) − Πf(τ, w(τ), hn−1(τ)), τ ∈ (0, b],
v(0), τ = 0.

Then by fixing τ ∈ (0, b],

‖hn+1(τ) − hn(τ)‖
U

= ‖Πf(τ, w(τ), hn(τ)) − Πf(τ, w(τ), hn−1(τ))‖
U

≤ 1
e
Mξ−η‖f(τ, w(τ), hn(τ)) − f(τ, w(τ), hn−1(τ))‖ξ

≤ 1
e
Mξ−ηNτ1−γ‖hn(τ) − hn−1(τ)‖

U

≤
(

1
e
Mξ−ηNb1−γ

)n

‖h1(τ) − h0(τ)‖
U
,

and for m > n (m,n ∈ N),

‖hm(τ) − hn(τ)‖
U

≤‖hm(τ) − hm−1(τ)‖
U

+ ‖hm−1(τ) − hm−2(τ)‖
U

+ · · · + ‖hn+1(τ) − hn(τ)‖
U

≤
(

Mξ−ηNb1−γ

e

)n 1 −
(

Mξ−ηNb1−γ

e

)m−n

1 − Mξ−ηNb1−γ

e

‖h1(τ) − h0(τ)‖
U

≤
(

Mξ−ηNb1−γ

e

)n 1

1 − Mξ−ηNb1−γ

e

‖h1(τ) − h0(τ)‖
U

−→ 0 as n → ∞.

Therefore, (hn(τ)) ⊂ U is a Cauchy sequence, and U being complete, we have
lim

n→∞ hn(τ) ∈ U . Since, this argument holds for each τ ∈ (0, b], we define a

function u : [0, b] → U by

u(τ) =

{
lim

n→∞ hn(τ), τ ∈ (0, b],

v(0), τ = 0.
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Again, for each fixed τ ∈ (0, b],

‖v(τ) − hn+1(τ) − Πf(τ, w(τ), u(τ))‖
U

≤ Mξ−η

e
‖f(τ, w(τ), hn(τ)) − f(τ, w(τ), u(τ))‖ξ

≤ Mξ−ηNb1−γ

e
‖hn(τ) − u(τ)‖

U

−→ 0 as n → ∞.

Therefore, u(τ) = v(τ) − Πf(τ, w(τ), u(τ)), for each τ ∈ (0, b].
Now, it remains to show that the function u belongs to Lp([0, b], U).

Observe that, for each n ∈ N ∪ {0}, hn ∈ Lp([0, b], U), because by definition
h0 ∈ Lp([0, b], U), and if we define Kn(τ) = f(τ, w(τ), hn−1(τ)), then Kn ∈
Lp([0, b], Yη) and therefore ΠKn ∈ Lp([0, b], U).
Also,

‖hn(τ)‖U

≤ ‖v(τ)‖U +
Mξ−η

e
‖f(τ, w(τ), hn−1(τ))‖ξ

≤ ‖v(τ)‖U +
Mξ−η

e
g(τ) +

Mξ−η

e
cτ1−γ‖w(τ)‖η +

Mξ−η

e
c‖hn−1(τ)‖U

≤
(
1 +

cMξ−η

e

)
‖v(τ)‖U +

(
Mξ−η

e
+ c

M2
ξ−η

e2

)
g(τ) +

(
Mξ−η

e
cτ1−γ +

M2
ξ−η

e2
c2τ1−γ

)

× ‖w(τ)‖η +
M2

ξ−η

e2
c2‖hn−2(τ)‖U

≤
[
1 +

cMξ−η

e
+ · · · + cnMn

ξ−η

en

]
‖v(τ)‖U +

[
Mξ−η

e
+ c

M2
ξ−η

e2
+ . . . + cn−1

Mn
ξ−η

en

]

× g(τ) + τ1−γ

[
c
Mξ−η

e
+ c2

M2
ξ−η

e2
+ · · · + cn

Mn
ξ−η

en

]
‖w(τ)‖η

≤ 1

1 − cMξ−η

e

‖v(τ)‖U +

cMξ−η

e

1 − cMξ−η

e

τ1−γ‖w(τ)‖η +

Mξ−η

e

1 − cMξ−η

e

g(τ):=G(τ) (say).

Therefore, G ∈ Lp([0, b], [0,∞)) and consequently, by vector-valued dominated
convergence theorem, we can conclude that u ∈ Lp([0, b], U).

Next, since w is a mild solution of (4.1), it satisfies

w(τ) = Tζ,δ(τ)y0 +
∫ τ

0

(τ − φ)δ−1Rδ(τ − φ)Bv(φ)dφ, τ ∈ (0, b].

Now, consider the following semilinear system:

Dδ,ζ
0+ y(τ) = − Ay(τ) + f(τ, y(τ), u(τ)) + Bv(τ) − f(τ, w(τ), u(τ)),

τ ∈ (0, b],

I
(1−δ)(1−ζ)
0+ w(0) =y0.

⎫⎪⎪⎬
⎪⎪⎭

(4.2)
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Then the mild solution of (4.2) satisfies

y(τ) = Tζ,δ(τ)y0 +
∫ τ

0

(τ − φ)δ−1Rδ(τ − φ)
[
f(φ, y(φ), u(φ)) + Bv(φ)

− f(φ,w(φ), u(φ))
]
dφ, τ ∈ (0, b].

Now, for τ ∈ (0, b], we have

τ1−γ‖y(τ) − w(τ)‖η

≤ τ1−γ

∫ τ

0

(τ − φ)δ−1
∥∥Rδ(τ − φ)

[
f(φ, y(φ), u(φ)) − f(φ,w(φ), u(φ))

]∥∥
η
dφ

≤ NM
Q
Mξ−ητ1−γ

Γ(δ)

∫ τ

0

(τ − φ)δ−1φ1−γ‖y(φ) − w(φ)‖ηdφ.

Take H(t) = t1−γ‖y(t) − w(t)‖η. Then, from the above inequality, we have

H(τ) ≤ NM
Q
Mξ−ητ1−γ

Γ(δ)

∫ τ

0

(τ − φ)δ−1H(φ)dφ, τ ∈ [0, b].

Using Lemma 2, we get y = w, that is, every solution of (4.1) with control v is
a solution of the semilinear system (1.1) with control u. Hence, Rb(0) ⊂ Rb(f),
and therefore Rb(f) = Yη.

Subsequently, problem (1.1) is approximately controllable.
Remark : When ζ = 0, (1.1) reduces to

RLDδ
0+y(τ) = − Ay(τ) + f(τ, y(τ), u(τ)) + Bu(τ), τ ∈ (0, b],

I1−δ
0+ y(0) =y0,

and it can be easily seen that the results in Theorems 4 and 5 hold for ζ = 0
when γ is replaced by δ.

5. Conclusion

In this work, we discuss the approximate controllability of a Hilfer fraction-
al differential equation with control in the nonlinear term. The existence and
uniqueness result is proved with the help of a fixed point theorem by utiliz-
ing the properties of the fractional powers of Aη, the semigroup {Q(τ)}τ≥0

and the associated operators {Rδ(τ)}τ>0, {Sδ(τ)}τ>0 and {Tζ,δ(τ)}τ>0. For
the approximate controllability result, based on the information available, we
construct a sequence of functions belonging to the space of admissible controls
that converges to a control function u ∈ Lp([0, b], U), which, by using the defi-
nition of mild solution and reachable sets, gives the approximate controllability
of our system.
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